Irrigation management is challenging, subjective, and time consuming on long-term crops. The high leaching rates in offshore stock plant production can cost over $100,000 per farm per year in wasted fertilizer and water. Growers are facing increasing regulation of runoff in many countries and our industry needs to be truly “green”.

Objective:
- Evaluate soil moisture-sensor and climate-based irrigation technologies to help improve irrigation consistency, reduce leaching, and save on water and fertilizer costs for long-term stock and potted plant production.

Our approach:
- We have grown geranium stock plants in perlite and gravel substrates, and poinsettias in peat/perlite, using moisture sensors tied into our environmental control computer to automatically trigger irrigation.
- We have also tracked plant water use using a logging weight scale, and related this to climate conditions (vapor pressure deficit and light) and crop leaf area.

Other planned research:
- Evaluate potential cost savings, reduced water and fertilizer leaching, and the effects of different substrate and irrigation practices on stock plant quality and yield using sensor-based technology.
- We will evaluate a new wireless PlantPoint irrigation package (Decagon Devices, Inc., available later this year) that integrates moisture sensors with online tracking and irrigation management, for stock and potted plant production.

How can you use this information:
- Measure how much water and fertilizer is leached at your operation, and calculate potential for cost savings.
- Consider using sensor-based technology on long-term crops. We can help with installation and setting up irrigation regimes.

Sensor-based irrigation can benefit stock and finished plant production with consistency and less waste
Ryan Dickson (Ph.D. student) and Dr. Paul Fisher, pfisher@ufl.edu, 352 273 4581

Example comparing water content measurement by weight or Decagon sensor

Volumetric water content per pot with three irrigation regimes

Di-electric soil moisture sensors were used to trigger irrigation based on a mV signal. A logging weight scale also measured volumetric water content in the growing substrate. Sensors can be easily calibrated on-site to a particular growing substrate & crop. We created “wet”, “medium”, or “dry” regimes by irrigating at different moisture levels (mV set points on the sensors) and irrigation durations.