The ‘Ultimate’ Plug

Celina Gómez, Paul R. Fisher, George Grant, Megha Poudel, and Joaquin Saavedra

Goal: Increase quality, production efficiency, and net economic return of young-plant production processes, and support stakeholder adoption of plant factory (PF) technologies.

Tissue-culture blueberry (*Vaccinium corymbosum*) microcuttings as a model crop

Introduction

- Controlled-environment plant factories (PF) offer many opportunities in agriculture
- U.S. operations have struggled financially
 - Primary focus on leafy greens for urban markets, which must compete with low-cost field-produced food crops
 - Use of “unproven” technology
 - Lack of training resources
- These challenges can be largely overcome with indoor propagation of high-value crops

Objective

Quantify growth, rooting time, and quality of tissue culture blueberries grown indoors under different light intensities.

Materials and Methods

- ‘Emerald’ and ‘Snowchaser’ blueberry microcuttings
- Four light intensity treatments in a growth chamber: 35, 70, 105, and 140 µmol·m⁻²·s⁻¹
 - “Control”: two GH environments (research and commercial)
 - Indoor environmental settings:
 - Photoperiod = 16 h d⁻¹
 - CO₂ = 800 / 400 ppm
 - Temperature = 22/18°C
 - Relative humidity: 95% down to 70%
 - Split-Plot design with four blocks (shelves) in one of two growth chambers
 - 8 weeks indoors + 4 weeks in GH

Results

- Effects of light intensity on plant growth and shrinkage
- Reduced crop time (from 8 to 4 weeks)
- Increased rooting
- Reduced crop shrinkage

Preliminary Conclusions

- Benefits of indoor propagation compared to GH-grown transplants:
 - Higher crop uniformity
 - Reduced crop time (from 8 to 4 weeks)
 - Increased rooting
 - Reduced crop shrinkage
- Economic analysis suggests a 3% reduction in shrinkage could pay for the additional production costs indoors
- Higher light intensity increases rooting and overall growth of blueberry micro-cuttings
- Higher light also causes temporary anthocyanin accumulation in leaves
- Good candidate crops for indoor propagation: high sales value, small size, and either high shrinkage rate or slow rooting time in a GH

Ongoing Efforts

- ‘Emerald’ microcuttings
- Two light intensities: 70 and 140 µmol·m⁻²·s⁻¹
- Four light quality treatments: white LEDs with or without UV-C, red, and far-red radiation
- “Control”: two GH environments (research and commercial)
- Data: growth, gas exchange, and quality (shrinkage, chlorophyll, and anthocyanin)

Acknowledgments

Floriculture Research Alliance (floriculturealliance.org), USDA Floriculture and Nursery Research Initiative, USDA-NE1835, and AgriStarts